
ELEMENTARY PROOF THAT Z4
p IS A DCI-GROUP

JOY MORRIS

Abstract. A finite group R is a DCI-group if, whenever S and T are subsets

of R with the Cayley graphs Cay(R, S) and Cay(R, T ) isomorphic, there exists
an automorphism ϕ of R with Sϕ = T .

Elementary abelian groups of order p4 or smaller are known to be DCI-

groups, while those of sufficiently large rank are known not to be DCI-groups.
The only published proof that elementary abelian groups of order p4 are DCI-

groups uses Schur rings and does not work for p = 2 (which has been separately

proven using computers). This paper provides a simpler proof that works for
all primes. Some of the results in this paper also apply to elementary abelian

groups of higher rank, so may be useful for completing our determination of

which elementary abelian groups are DCI-groups.

1. Introduction

The classification of DCI-groups is an open problem in the theory of Cayley
graphs and is closely related to the isomorphism problem for graphs. It is a long-
standing problem that has been worked on a lot, see [4, 8] for additional background.
The formulation of this problem was introduced by Babai in [2]. Elementary abelian
groups of order p4 or smaller are known to be DCI-groups [14, 5, 1, 3, 6], while
those of sufficiently large rank are known not to be DCI-groups [11, 13, 12]. The
only published proof that elementary abelian groups of order p4 are DCI-groups
[6], uses Schur rings and does not work for p = 2 (which has been separately proven
using computers). This paper provides a simpler proof that works for all primes.
It is based on work from the author’s PhD thesis [9] (which was completed concur-
rently with the Hirasaka-Muzychuk result), but has been considerably shortened
and simplified. Some of the results in this paper have been newly generalised to
apply to elementary abelian groups of higher rank, so may be useful for completing
our determination of which elementary abelian groups are DCI-groups.

Let R be a finite group and let S be a subset of R. The Cayley digraph of R
with connection set S, denoted Cay(R,S), is the digraph with vertex set R and
with (x, y) being an arc if and only if x−1y ∈ S. Now, Cay(R,S) is said to have the
Cayley isomorphism property for digraphs, or be a DCI-graph for short, if whenever
Cay(R,S) is isomorphic to Cay(R, T ), there exists an automorphism ϕ of R with
ϕ(S) = T . Clearly, Cay(R,S) ∼= Cay(R,ϕ(S)) for every ϕ ∈ Aut(R) so that for
a DCI-graph, solving the isomorphism problem boils down to understanding the
automorphisms of the group R. The group R is a DCI-group if Cay(R,S) is a
DCI-graph for every subset S of R. Moreover, R is a CI-group if Cay(R,S) is
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a DCI-graph for every inverse-closed subset S of R. Thus every DCI-group is a
CI-group.

Throughout this paper, p will always denote a prime number, and calculations
are always performed modulo p (i.e., in Zp).

Theorem 1.1. Let p be a prime number and let R be the elementary abelian group
of order p4. Then R is a DCI-group.

The structure of the paper is straightforward. In Section 2, we provide some
preliminary definitions and notation, and reproduce some lemmas from other papers
that will apply directly to our situation, including our main tool. In Sections 3, 4
and 5 we complete the proof of Theorem 1.1. Where possible, we will state our
results in the more general context of Cayley graphs on arbitrary elementary abelian
groups, as some of the results may be useful for proving that elementary abelian
groups of higher rank are DCI-groups.

2. Preliminary results and notation

Babai [2] proved a very useful criterion for determining when a finite group R is
a DCI-group and, more generally, when Cay(R,S) is a DCI-graph.

Lemma 2.1. Let R be a finite group and let S be a subset of R. Then Cay(R,S)
is a DCI-graph if and only if Aut(Cay(R,S)) contains a unique conjugacy class of
regular subgroups isomorphic to R.

Let Ω be a finite set and let G be a permutation group on Ω. The 2-closure of
G, denoted G(2), is the set

{π ∈ Sym(Ω) | ∀(ω, ω′) ∈ Ω2, there exists gωω′ ∈ G with π((ω, ω′)) = gωω′((ω, ω′))},

where Sym(Ω) is the symmetric group on Ω. Observe that in the definition of G(2),
the element gωω′ of G may depend upon the ordered pair (ω, ω′). The group G is
said to be 2-closed if G = G(2).

It is easy to verify that G(2) is a subgroup of Sym(Ω) containing G and, in fact,
G(2) is the smallest (with respect to inclusion) subgroup of Sym(Ω) preserving every
orbital digraph of G. It follows that the automorphism group of a graph is 2-closed.
Therefore Lemma 2.1 immediately yields:

Lemma 2.2 (Lemma 2.2 of [4]). Let R be a finite group and let RL be the left
regular representation of R in Sym(R). If, for every π ∈ Sym(R), the groups RL
and π−1RLπ are conjugate in 〈RL, π−1RLπ〉(2), then R is a DCI-group.

We will use this formulation of Babai’s criterion without comment in our proof
of Theorem 1.1.

We now set up some notation that will be used throughout the rest of the paper.
Let R be an elementary abelian group of rank n. Set G = 〈RL, π−1RLπ〉. Let

P be a Sylow p-subgroup of G with R ≤ P and let T be a Sylow p-subgroup of
Sym(Ω) with P ≤ T . From Sylow’s theorems, replacing π−1RLπ by a suitable
G-conjugate, we may assume that π−1RLπ ≤ P , so that in fact G = P . From now
on we will refer exclusively to G, but keep in mind that G itself is a p-group.

Observe that the group T is Zp wr . . .wr Zp (n copies of Zp), which has a unique
system of imprimitivity with blocks of size pi for each 0 ≤ i ≤ n. Since RL and
π−1RLπ are acting regularly, they must admit these same systems of imprimitivity.
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For 0 ≤ i ≤ n, let Bi be the system of imprimitivity of T that consists of blocks of
size pi.

For each 0 ≤ i ≤ n − 1, choose τi to be an element of RL that fixes each
set in Bi+1 setwise, and has order p in its action on the sets in Bi. Notice that
〈τ0, . . . , τn−1〉 = RL. Let v be a fixed element of R (recall that both RL and
π−1RLπ are acting on R). For each 0 ≤ i ≤ n − 1, define τ ′i to be the unique
element of π−1RLπ such that τ ′i(v) = τi(v).

If we say that a permutation fixes every element of Bi for some i, this means
that the blocks of Bi are all fixed setwise, and does not imply that any point of R
is fixed.

For any v ∈ R, use Bv to denote the element of B1 that contains v, and Cv to
denote the element of B2 that contains v. In some cases, we will be dealing with
two or even three systems of imprimitivity of G with blocks of size p; in this event,
we call the additional systems B′1 and B′′1 , and B′v and B′′v will denote the elements
of these systems (respectively) that contain v.

The following result is a restatement of Proposition 2.3 of [10].

Lemma 2.3. Let π−1RLπ and RL be isomorphic to Znp and lie in the same Sylow
p-subgroup of Sym(R). Suppose that τ ∈ RL fixes every element of Bi for some
i ≥ 1, and has order p on the elements of Bi−1. Let τ ′ ∈ π−1RLπ be such that
τ ′(B) = τ(B) for some B ∈ Bi−1. Then τ ′(B′) = τ(B′) for every B′ ∈ Bi−1.

The hypothesis that π−1RLπ and RL lie in the same Sylow p-subgroup of Sym(R)
will generally be considered to be part of the notation we have established (that G is
a p-group), so will be tacitly assumed in our results. Since it is the key assumption
needed to prove the above result, however, we have stated it explicitly this once.

We introduce a bit more notation that will be required for the next result, and
will be used in Section 3. Let K be the kernel of the action of G on B1. We define
an equivalence relation ≡ on Ω. Given x, x′ ∈ R, we have x ≡ x′ whenever, for
every ρ ∈ G, ρ|Bx = id|Bx if and only if ρ|Bx′ = id|Bx′ (or equivalently, ρ|Bx is a
p-cycle if and only if ρ|Bx′ is a p-cycle). Let E denote the set of equivalence classes
of ≡.

Lemma 2.4. For every ρ ∈ K and for every E ∈ E, the permutation ρE : R→ R,
fixing R \ E pointwise and acting on E as ρ does, lies in G(2).

Proof. This is Lemma 2 in [7]. (We remark that [7, Lemma 2] is only stated for
graphs, but the result holds for each orbital digraph of G, and hence for G(2).) �

The final result that we require that we require from the existing literature is
Proposition 2.7 from [10], restated slightly.

Lemma 2.5. Let R be an elementary abelian group of rank n. Under the notation
we have established, if τ0, . . . , τn−2 ∈ π−1RLπ, then RL and π−1RLπ are conjugate
in G(2).

3. τ ′1

In this section, we prove a key lemma that will allow us to assume that for any
elementary abelian group R (regardless of the rank), the centre of G has order at
least p2. Specifically, we will prove that there exists ψ ∈ G(2) such that ψ commutes
with τ0, and ψπ−1RLπψ contains τ1. Notice that Lemma 2.3 immediately implies
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that τ ′0 = τ0 ∈ Z(G), so proving this will allow us to assume that |Z(G)| ≥ p2;
specifically, that τ0 = τ ′0 and τ ′1 = τ1 in the final section.

Since the following lemma applies quite broadly, we state it in general terms.
We will follow with a corollary that more clearly applies this lemma.

Lemma 3.1. Let R be an elementary abelian group of rank n. Under the notation
we have established, if τ ′ ∈ π−1RLπ and τ ∈ RL such that τ−1τ ′ fixes every element
of B1, then there exists ψ ∈ G(2) such that ψ−1π−1RLπψ contains τ .

Furthermore, if α fixes every element of E, then ψ commutes with α.

Proof. By Lemma 2.3, we may assume that τ ′0 = τ0. Replace τ ′ if necessary by τ c0τ
′

for some c, so that τ−1τ ′(v) = v. The hypotheses of this lemma are still satisfied.
We will use g to denote τ−1τ ′. Notice that for any B ∈ B1, since g fixes B setwise

and is in the p-group G, we must have g|B = τ cB0 |B for some cB . Furthermore, if
B,B′ ∈ B1 and B,B′ ⊆ E ∈ E , then using ρ = τ−cB0 g in the definition of ≡, we see
that we must have cB = cB′ . If cB = cB′ for every B,B′ ∈ B1, then since g(v) = v,
we have cB = 0 for every B ∈ B1, and hence τ ′ = τ , so letting ψ = id yields the
desired conclusion. Therefore, in the remainder of this proof, we may assume that
|E| > 1, and that there exists B ∈ B1 such that cB 6= 0.

Now we show that for any E ∈ E , τ(E) 6= E. Let σ ∈ RL be such that σ(v) ∈ B,
where cB 6= 0, and let σ′ ∈ π−1RLπ be such that σ′(v) = σ(v), so σ−1σ′(v) = v.
Let w = τ(v). Then since both RL and π−1RLπ are abelian, we have

σ−1σ′(w) = σ−1τ ′σ′(v)
= σ−1τ cB0 τσ(v)
= τ cB0 (w).

(To get the second line, we are using the definition of cB .) Thus using ρ = σ−1σ′

in the definition of ≡, we see that when v ∈ E ∈ E , we have w = τ(v) 6≡ v. Since E
is invariant under G and G is transitive, this proves that for any E ∈ E , τ(E) 6= E.

We know that E consists of pj classes, for some j ≥ 1. Since RL is elementary
abelian, τ has order p, so the classes of E can be partitioned into pj−1 orbits of τ ,
which we will refer to as orbit 1, . . . , orbit pj−1. For orbit i, we arbitrarily choose
one element of E in that orbit, and label it Ei. Now, the elements of E are

{τk(Ei) : 0 ≤ k ≤ p− 1, 1 ≤ i ≤ pj−1}.

For 1 ≤ i ≤ pj−1, let Bi ∈ B1 be such that Bi ⊆ Ei. Define ψ as follows: for any i,
ψ|Ei = id|Ei , and for any integer k,

ψ|τk(Ei) = τ
Pk−1
t=0 cτt(Bi)

0 |τk(Ei).

Notice that since τ ′ has order p,
∑p−1
t=0 cτt(Bi) ≡ 0 (mod p), making this definition

consistent.
Now, ψ is a product of elements of the form (τ c0 )E (using the notation of

Lemma 2.4), so by Lemma 2.4, we have ψ ∈ G(2). Since τ0 ∈ Z(G), it is clear
that ψ commutes with any α that fixes every element of E .
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We claim that ψ−1τ ′ψ = τ , which will complete the proof. Let x ∈ R be
arbitrary, and let k, i be such that x ∈ τk(Ei). Then since τ0 ∈ Z(G), we have

ψ−1τ ′ψ(x) = ψ−1τ ′τ
Pk−1
t=0 cτt(Bi)

0 (x)

= ψ−1τ
Pk−1
t=0 cτt(Bi)

0 τ ′(x)

= ψ−1τ
Pk
t=0 cτt(Bi)

0 τ(x)
= τ(x)

�

Corollary 3.2. Let R be an elementary abelian group of rank n. Under the notation
we have established, there exists ψ ∈ G(2) such that ψ commutes with τ0, and
ψ−1π−1Rπψ contains τ1. Thus we may assume that τ0, τ1 ∈ Z(G).

Proof. By Lemma 2.3, we have τ ′0 = τ0 fixes every element of E setwise by the
definition of ≡, and for any B ∈ B1, we have τ−1

1 τ ′1(B) = B. Thus τ ′1 and τ1 fulfill
the requirements of Lemma 3.1, with τ0 taking the role of α. �

4. An easy case

In this section, we will consider the possibility that τ ′2 is “close” to τ2 (meaning
that τ−1

2 τ ′2 fixes every block of B1 or some other system of imprimitivity with blocks
of size p). We determine some circumstances under which this situation must arise,
and conclude that the proof of Theorem 1.1 is complete under these circumstances.

Corollary 3.2 has concluded that we may assume τ0, τ1 ∈ Z(G). This means
that for any g ∈ G and any w ∈ R, if g(w) = τ i0τ

j
1 (w) ∈ Cw, then gk(w) = τki0 τkj1 .

Thus G lies in multiple Sylow p-subgroups of Sym(R); in particular, every Sylow
p-subgroup of Sym(R) that admits B2, . . . ,Bn−1 as systems of imprimitivity as well
as admitting any one of the p + 1 systems of blocks of size p that are preserved
by RL. (In addition to B1, these are the orbits of (τ0)iτ1 for 0 ≤ i ≤ p − 1.) Our
argument about the action of g demonstrates that orbits of Gv meet any block of
B2 in either a single point, one of these blocks of size p, or the entire block of B2.

By our observations above, we may replace B1 by any of the other systems of
imprimitivity with blocks of size p that are refinements of B2 and are admitted by
G, and redefine ≡ and E accordingly. This concept gives us the following result.

Lemma 4.1. Let R be an elementary abelian group. Under the notation we have
established, if τ−1

2 τ ′2 fixes every block of some system of imprimitivity of RL with
blocks of size p that is a refinement of B2, then there exists ψ ∈ G(2) that commutes
with τ0 and τ1 and such that τ2 ∈ ψ−1π−1RLπψ.

Proof. By Corollary 3.2, we may assume that τ0, τ1 ∈ Z(G). Replacing B1 by the
system of imprimitivity whose blocks are fixed by τ−1

2 τ ′2 and applying Lemma 3.1,
we see that there exists ψ ∈ G(2) such that τ2 ∈ ψ−1π−1RLπψ. Furthermore, τ0
and τ1 commute with τ−1

2 τ ′2 and so have the property of α in the statement of that
lemma. Thus, ψ commutes with both τ0 and τ1. �

The next lemma and corollary point out a circumstance under which the above
special situation must arise. In order to find appropriate elements of G(2) that will
conjugate π−1RLπ to RL, the orbits of particular subgroups of G will be key. The
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subgroups of interest are those that fix the vertex v, while simultaneously fixing
every block of Bi for some i. For any fixed i, we will denote this subgroup by Gv,Bi .

Lemma 4.2. Let R be an elementary abelian group of rank 4. Under the notation
we have established, suppose there are blocks C,C ′ ∈ B2 such that Gv,B2 fixes each
B ∈ B1 with B ⊆ C, and also fixes each B′ ∈ B1 with B′ ⊆ C ′. Further suppose
that α ∈ RL is such that α(Cv) = C and there is no i such that αi(Cv) = C ′. Then
τ−1
2 τ ′2 fixes every element of B1 (setwise).

Proof. There are p2 elements of B2. By our assumptions, if β ∈ RL is such that
β(Cv) = C ′, then any element of B2 can be written uniquely as αiβj(Cv), where
0 ≤ i ≤ p− 1, and 0 ≤ j ≤ p− 1.

We will show that if Gv,B2 fixes each block of B1 in αiβj(Cv) setwise, then Gv,B2

fixes each block of B1 in αi+1βj(Cv) setwise; and likewise, Gv,B2 fixes each block of
B1 in αiβj+1(Cv) setwise. Inductively, this will show that Gv,B2 fixes each block of
B1 setwise, so in particular, τ−1

2 τ ′2 ∈ Gv, which fixes each block of B2 setwise, must
actually fix each block of B1 setwise.

Let g be an arbitrary element of Gv,B2 . Let γ ∈ {α, β}. Since (by assumption)
g fixes each block of B1 in αiβj(Cv) setwise, in particular we may assume that
gαiβj(v) = τk0 α

iβj(v) for some k. Thus g′ = α−iβ−jτ−k0 gαiβj ∈ Gv, and since g
and τ0 fix every element of B2, so does g′, so g′ ∈ Gv,B2 . We therefore have that g′

fixes every B ∈ B1 with B ⊂ γ(Cv). Let B be arbitrary subject to the constraints
B ∈ B1 and B ⊂ γαiβj(Cv). Let B′ ⊂ γ(Cv) be such that αiβj(B′) = B. We know
that g′ fixes B′, so α−iβ−jτ−k0 gαiβj(B′) = B′. This implies that τk0 (B) = g(B).
Since τ0 fixes B setwise, so must g. This completes the proof. �

Corollary 4.3. Let R be an elementary abelian group of rank 4. Under the notation
we have established, suppose there are blocks C,C ′ ∈ B2 such that Gv,B2 fixes each
B ∈ B1 with B ⊆ C, and also fixes each B′ ∈ B1 with B′ ⊆ C ′. Further suppose
that α ∈ RL is such that α(Cv) = C and there is no i such that αi(Cv) = C ′. Then
there exists ψ ∈ G(2) that commutes with τ0 and τ1, such that τ2 ∈ ψ−1π−1RLπψ.

Proof. This is an immediate consequence of Lemmas 4.2 and 4.1. �

This gives us the following conclusion.

Corollary 4.4. Let R be an elementary abelian group of rank 4. Under the notation
we have established, if either:

• τ−1
2 τ ′2 fixes every block of some system of imprimitivity of RL with blocks

of size p that is a refinement of B2; or
• there are blocks C,C ′ ∈ B2 such that Gv,B2 fixes each B ∈ B1 with B ⊆ C,

and also fixes each B′ ∈ B1 with B′ ⊆ C ′. Furthermore, if α ∈ RL is such
that α(Cv) = C then there is no i such that αi(Cv) = C ′,

then there exists ψ ∈ G(2) such that ψ−1π−1RLπψ = RL.

Proof. This follows from Corollary 4.3, Lemma 4.1, and Lemma 2.5. �

Thus, in the next section, we may assume that there is no system of imprimitivity
of RL with blocks of size p that is a refinement of B2 whose blocks are all fixed by
τ−1
2 τ ′2. We may also assume that if α, β ∈ RL such that there is no i for which
αi(Cv) = β(Cv), then there is no system of imprimitivity of RL with blocks of size
p that is a refinement of B2 such that the orbits of Gv,B2 in both α(Cv) and β(Cv)
are subsets of these blocks.
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5. Proof of Theorem 1.1

We begin with a lemma that gives us important information about certain orbits
of Gv. In the lemma, we show that if v ∈ Dv ∈ Bi, and α ∈ RL, then knowing
something about the orbits of G′ in α(Dv) informs us about the orbits of G′ in
αj(Dv) for any j. Specifically, if the orbits in α(Dv) are not contained within the
blocks of some smaller block system Bk of RL, then neither are the orbits in αj(Dv).

Lemma 5.1. Let R be an elementary abelian group. Under the notation we have
established, suppose D,Dv ∈ Bi, with v ∈ Dv and D = α(Dv) for some α ∈ RL.
Suppose that some element of Gv does not fix some block of Bj in D (setwise),
where j < i. Then for any 1 ≤ k ≤ p − 1, some element of Gv does not fix some
block of Bj in αk(Dv) (setwise).

Proof. Let t be as small as possible such that some element of Gv does not fix some
block of Bj in αkt(Dv) (setwise). Such a t exists since α has order p, so αkt = α
for some 1 ≤ t ≤ p− 1. By assumption, there exist F ∈ Bj such that F ⊂ αkt(Dv)
and g ∈ Gv such that g(F ) 6= F . Let β ∈ RL be such that βkt(v) ∈ F .

Now, by our choice of t, every element of Gv fixes every block of Bj in αk(t−1)(Dv)
(setwise). In particular, if Fv is the block of Bj that contains v, then βk(t−1)(Fv)
is fixed (setwise) by g, so there exists some γ ∈ RL such that γg fixes the point
βk(t−1)(v). Conjugating γg by βk(t−1) yields an element of Gv that does not fix
βk(Fv) ⊂ βk(Dv) = αk(Dv). �

We must deepen our understanding of the orbits of Gv. We define a new relation
∼ on the points of R as follows. We say v1 ∼ v2 if there exists v3 ∈ Cv2 such that
there is no g ∈ Gv1 with g(v2) = v3, i.e. Cv2 is not contained in an orbit of Gv1 .
Notice that Lemma 5.1 shows that this relation is symmetric, since if v2 = α(v1)
then there is some i such that αi(v2) ∈ Cv1 , and the lengths of the intersection
of the orbits of Gv2 in Cv1 = αi(Cv2) are the same as the lengths of the orbits of
Gv1 in αi(Cv1), since these are conjugate. The relation ∼ need not be transitive,
but we can define an equivalence relation ≡2 by v1 ≡2 v2 if there is a sequence
u1 = v1, u2, . . . , ui = v2 such that u1 ∼ u2 ∼ . . . ∼ ui.

In the case n = 4, the relation ≡2 may have 1, p, or p2 equivalence classes, since
clearly any two vertices in the same block of B2 are equivalent. If ≡2 has more
than one equivalence class, then each equivalence class has the form ∪p−1

i=0α
i(Cw)

for some α ∈ RL (since the equivalence classes are blocks of G; note that if there
are p2 equivalence classes, then α fixes Cw). Thus Lemma 5.1 in fact proves that
∼ is an equivalence relation in this case.

Before proving our main lemmas, we prove a result that will be needed in both.

Lemma 5.2. Let R be an elementary abelian group of rank 4. Under the notation
we have established, v 6∼ w for any w ∈ τ2(Cv).

Proof. By Corollary 4.4, we may assume that for any B1, some block of B1 is not
fixed by τ−1

2 τ ′2. Let B1 be an arbitrary refinement of B2 with blocks of size p.
By the definition of ∼, showing that v 6∼ w is equivalent to showing that τ2(Cv) is

contained in an orbit of Gv. Let α(Bv) be a block of B1 that is not fixed by τ−1
2 τ ′2.

Consider (α′)−1α, where α′ is the element of π−1RLπ such that α′(v) = α(v).
Clearly (α′)−1α ∈ Gv. Notice that

α′(τ2(Bv)) = α′(τ ′2(Bv)) = τ ′2(α′(Bv)) = τ ′2(α(Bv)) 6= τ2(α(Bv)).
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Therefore, (α′)−1α(τ2(Bv)) = (α′)−1τ2α(Bv) 6= τ2(Bv). Hence the orbits of Gv in
τ2(Cv) are not contained in the blocks of B1. There was nothing special about the
choice of B1, so the orbits of Gv in τ2(Cv) are not contained in the blocks of any
system of imprimitivity of G that is a refinement of B2 with blocks of size p. The
only way this can happen is if τ2(Cv) is contained in an orbit of Gv, as claimed. �

In the next result, we dispose of the cases where ≡2 (and so ∼) have more than
one equivalence class.

Lemma 5.3. Let R be an elementary abelian group of rank 4. Under the notation
we have established, suppose that ≡2 has more than one equivalence class. Then
there exists ψ ∈ G(2) such that ψ−1π−1RLπψ = RL.

Proof. By Lemma 5.2, we know that v 6∼ τ2(v). Since ∼ is actually an equivalence
relation under our current assumptions, this in fact implies that τ2(v) is not in the
same equivalence class (of ≡2) as v.

Redefine τ3 if necessary, so that if ≡2 has p equivalence classes, then the equiv-
alence class containing Cv is ∪p−1

i=0 τ
i
3(Cv). Define ϕ by ϕ(w) = τ ′j2 τ

−j
2 (w) for

w ∈ τ j2 τ i3(Cv).
First notice that ϕ commutes with τ0 and τ1. By Corollary 3.2, we may therefore

assume that τ0, τ1 ∈ ϕ−1π−1RLπϕ. Let w ∈ R be arbitrary, say w ∈ τ j2 τ
i
3(Cv).

Then we have

ϕ−1τ ′2ϕ(w) = ϕ−1τ ′2τ
′j
2 τ
−j
2 (w) = τ j+1

2 τ
′−(j+1)
2 τ ′j+1

2 τ−j2 (w) = τ2(w),

so ϕ−1τ ′2ϕ = τ2. Notice that since τ−1
2 τ ′2 is in Gv,B2 , ϕ also fixes every block of

B2 (setwise). By the definition of ≡2, in order to ensure that ϕ ∈ G(2), we need
only verify that for any pair w1, w2 with w1 ≡2 w2, there is some g ∈ G such that
g(w1) = ϕ(w1) and g(w2) = ϕ(w2). But this is clear from the definition of ϕ, with
g = τ ′j2 τ

−j
2 since w1 ≡2 w2 implies that if w1 ∈ τ j2 τ

i1
3 (Cv), then w2 ∈ τ j2 τ

i2
3 (Cv).

Thus, τ0, τ1, τ2 ∈ ϕ−1π−1RLπϕ. Now Lemma 2.5 completes the proof. �

We now complete the proof with a longer result that deals with the case where
≡2 has a single equivalence class.

Lemma 5.4. Let R be an elementary abelian group of rank 4. Under the notation
we have established, suppose that ≡2 has a single equivalence class. Then there
exists ψ ∈ G(2) such that ψ−1π−1RLπψ = RL.

Proof. Since ≡2 has a single equivalence class, there must exist α, β ∈ RL such that
α and β each have order p on the blocks of B2, there is no i such that αi(Cv) =
β(Cv), and v ∼ α(v), β(v). Notice that since we may assume (by Corollary 3.2)
that τ0, τ1 ∈ Z(G), the intersection of any orbit of Gv with any block of B2 must
be a block admitted by RL. Observe that since v ∼ α(v), β(v) and Gv,B2 ≤ Gv,
using the second condition of Corollary 4.4 we may assume that if the intersections
of the orbits of Gv with α(Cv) are blocks of B1, then the intersections of the orbits
of Gv with β(Cv) are blocks of B′1, where B′1 6= B1.

By Lemma 5.2, we know that α(Cv), β(Cv) 6= τ i2(Cv) for any i, so there exist
some j, k such that αjτk2 (Cv) = β(Cv). Since Gv fixes every block of B3 setwise, in
particular it fixes the block containing αj(Cv) and β(Cv) setwise. Since B′1 6= B1

and τ0, τ1 ∈ Z(G), there must not exist g ∈ Gv such that gαj(Cv) = β(Cv). So
Gv must fix every block of B2 in the block of B3 that contains αj(Cv) and β(Cv).
Using Lemma 5.1 with i = 3 and j = 2, this implies that Gv = Gv,B2 .
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Without loss of generality, assume β(Cv) = τ i2α(Cv).
For the remainder of the proof, we must consider two cases separately: either

there is some γ ∈ RL such that γ(Cv) = τ j2α(Cv) for some j 6= 0, i, and v ∼ γ(v);
or v 6∼ τ j2α(v) for every j 6= 0, i.

Case 1. There is some γ ∈ RL such that γ(Cv) = τ j
2α(Cv) for some

j 6= 0, i, and v ∼ γ(v).
Again using Corollary 4.4 we may assume that the orbits of Gv in γ(Cv) are

blocks of B′′1 , where B′′1 6= B′1,B1.
In this case, we claim that for any g ∈ Gv, if g(α(v)) = σ1(α(v)) and g(β(v)) =

σ2(β(v)), then for any w = αaβb(v), we have g(w) = σa1σ
b
2(w). Since g commutes

with τ0 and τ1, and every block of B2 can be written as αaβb(Cv) for some a, b, this
completely determines the action of g.

To prove our claim, we first note that α, β, and γ are interchangeable in the
arguments we will make (and in fact in the statement of the claim). Notice that
α(Cv) = βk1γk2(Cv) for some k1, k2; in fact (by multiplying by appropriate powers
of τ0 and τ1) we can choose β and γ such that βk1γk2(v) = α(v).

Using Lemma 5.1, we have g(βk1(B′v)) = βk1(B′v), so there is some σ2 ∈ RL
that fixes all blocks of B′1 such that σ−1

2 g fixes βk1(v). Conjugating Gv by βk1 ,
we know that Gβk1 (v) fixes βk1γk2(B′′v ), so σ−1

2 gα(B′′v ) = α(B′′v ). Thus gα(B′′v ) =
σ2α(B′′v ). Similarly, there is some σ1 ∈ RL that fixes all blocks of B1 such that
for some x, σ1σ

−x
2 g fixes γk2(v), and a similar argument shows that gα(B′v) =

σ−1
1 σx2α(B′v), where σ1σ

−x
2 fixes every block of B′′1 . In particular, gα(v) ∈ σ2α(B′′v )∩

σ−1
1 σx2α(B′v) ∩ α(Bv), and this intersection consists of the single point σ1α(v) (so
x = 1). Hence gα(v) = σ1α(v). This argument in fact shows that if we know gα(v),
we can determine from it gβk1(v) and gγk2(v).

Now consider g(αβk1(v)). Since σ−1
1 g fixes α(v), it lies in αGvα−1, so must also

fix αβk1(B′v). Similarly, σ−1
2 g fixes βk1(v), so fixes αβk1(Bv). Hence gαβk1(v) ∈

σ1αβ
k1(B′v)∩σ2αβ

k1(Bv). Straightforward calculations show that the unique vertex
in this intersection is σ1σ2αβ

k1(v). Now gα2(v) ∈ α2(Bv), say σx1gα
2(v) = α2(v).

Then σx1gαβ
k1(v) ∈ αβk1(B′′v ), since αβk1(Cv) = γ−k2α2(Cv). The unique solution

to this is x = −2, so gα2(v) = σ2
1α

2(v). By repeating this argument p − 3 more
times, we may conclude that gαa(v) = σa1α

a(v), for any a. As previously mentioned,
there is nothing special about α as compared to β or γ, so a corresponding result
for β also holds.

Finally, since any block of B2 can be written uniquely as αaβb(Cv), by showing
that if gαa(v) = σa1α

a(v) and gβb(v) = σb2β
b(v) (replacing σ2 by an appropriate

power), then gαaβb(v) = σa1σ
b
2(αaβb(v)) we will complete the proof of our claim.

Again, our knowledge of the orbits of Gv tells us that since σ−a1 g fixes αa(v),
it also fixes αaβb(B′v), and since σ−b2 g fixes βb(v), it also fixes αaβb(Bv). Thus
g(αaβb(v)) ∈ σa1 (αaβb(B′v))∩σb2(αaβb(Bv)). The unique point of intersection shows
that g(αaβb(v)) = σa1σ

b
2(αaβb(v)). This completes the proof of our claim.

If τ−1
2 τ ′2 fixes either α(v) or β(v), then the above claim demonstrates that τ−1

2 τ ′2
in fact fixes every block of either B′1 or (respectively) every block of B1, and hence
by Corollary 4.4, we are done. So we may assume that τ−1

2 τ ′2(α(v)) = σ1α(v) where
σ1 ∈ RL is not the identity, and τ−1

2 τ ′2(β(v)) 6= β(v).
Now, we have α−1α′ ∈ Gv, so by our claim, if α−1α′ fixes either α(v) or β(v),

then it must fix every block system of either B′1 or B1 (respectively). But then since
the only point that is in both γ(B′′v ) and either one of γ(Bv) or γ(B′v) is γ(v), we
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must have α−1α′ also fixes γ(v). Now using whichever two of α(v), β(v), and γ(v)
are fixed here, to take the roles of α(v) and β(v) in the proof of our claim, we see
that α = α′ ∈ Z(G). But then τ ′2α(v) = ατ ′2(v) = ατ2(v) = τ2α(v), which cannot
be true since τ−1

2 τ ′2 does not fix α(v). Thus α−1α′ cannot fix either α(v) or β(v),
and hence (by our claim) does not fix any vertex outside of Cv.

In particular, if α−1α′(α(v)) = µ1(α(v)) where µ1 ∈ RL fixes every block of
B1, and α−1α′(β(v)) = µ2(β(v)) where µ2 ∈ RL fixes every block of B′1, then
α−1α′(τ2(v)) = α−1α′(α−1β)k(v) for some k such that ki = 1, and by our claim
this will be µ−k1 µk2(α−1β)k(v) = µ−k1 µk2τ2(v), with neither µ1 nor µ2 being the
identity. Also, since α′ commutes with τ ′2, we have

α′τ2(v) = α′τ ′2(v) = τ ′2α
′(v) = τ ′2α(v) = σ1τ2α(v),

so α−1α′τ2(v) = σ1τ2(v) ∈ τ2(Bv). Since µ2 moves the blocks of B1 in a p-cycle
and k 6= 0, µ−k1 µk2τ2(v) 6∈ τ2(Bv), which is a contradiction.

All of this serves to show that this case cannot arise unless Corollary 4.4 applies.
Case 2. v 6∼ τ j

2α(v) for every j 6= 0, i.
We need to set up some notation for this case. Let σa,b be the element of RL

that takes αaτ b2(v) to τ−1
2 τ ′2α

aτ b2(v). Notice that σa,b fixes every block of B2. For
any m, define km and k′m to be the unique values such that

σkm1,0σm,0σm,1 . . . σm,mi−1 = σ
k′m
1,i .

Define ϕ by ϕ(αa(v)) = σka1,0α
a(v) for any a, ϕ(τ t2α

a(v)) = (τ ′2)tϕ(αa(v)), and ϕ

commutes with τ0 and τ1. We claim that ϕ ∈ G(2), and that ϕ−1τ ′2ϕ = τ2. With
Lemma 2.5, this will complete the proof.

We begin by showing that ϕ ∈ G(2). Since ϕ fixes every block of B2, according
to the assumptions of this case, we need only verify two things: that if w, x are such
that x ∈ αa(Cw) for some a, then there is some g ∈ G such that g(Bx) = ϕ(Bx)
and g(Bw) = ϕ(Bw); and that if w, x are such that x ∈ βa(Cw) for some a, then
there is some g ∈ G such that g(B′x) = ϕ(B′x) and g(B′w) = ϕ(B′w)

Suppose that x ∈ αa(Cw), say w ∈ τ t2αs(Cv) and x ∈ τ t2αs+a(Cv). Then ϕ(w) =
(τ ′2)tσks1,0τ

−t
2 (w) ∈ (τ ′2)tτ−t2 (Bw). Also, ϕ(x) = (τ ′2)tσks+a1,0 τ−t2 (x) ∈ (τ ′2)tτ−t2 (Bx),

giving us the desired conclusion with g = (τ ′2)tτ−t2 .
Suppose that x ∈ βa(Cw), say w ∈ τ t2αs(Cv) and x ∈ τ t+ia2 αs+a(Cv). Then

ϕ(w) = (τ ′2)tσks1,0τ
−t
2 (w)

= (τ ′2)tσk
′
s

1,iσ
−1
s,0σ

−1
s,1 . . . σ

−1
s,si−1τ

−t
2 (w)

= σ
k′s
1,iσ
−1
s,0σ

−1
s,1 . . . σ

−1
s,si−1σs,0σs,1 . . . σs,t−1(w)

∈ σ−1
s,0σ

−1
s,1 . . . σ

−1
s,si−1σs,0σs,1 . . . σs,t−1(B′w)

= (τ ′2)t−siτsi−t2 (B′w).

Similarly,

ϕ(x) = (τ ′2)t+iaσks+a1,0 τ−t−ia2 (x)

= (τ ′2)t+iaσ
k′s+a
1,i σ−1

s+a,0σ
−1
s+a,1 . . . σ

−1
s+a,(s+a)i−1τ

−t−ia
2 (x)

∈ σ−1
s+a,0σ

−1
s+a,1 . . . σ

−1
s+a,(s+a)i−1σs+a,0σs+a,1 . . . σs+a,t+ai−1(B′x)

= (τ ′2)t−siτsi−t2 (B′x).



ELEMENTARY PROOF THAT Z4
p IS A DCI-GROUP 11

Again we have the desired conclusion, with g = (τ ′2)t−siτsi−t2 . Hence ϕ ∈ G(2).
Now consider ϕ−1τ ′2ϕ(w), where w ∈ τ t2αs(Cv). Although the calculation in the

case t = p − 1 is different from the other cases, straightforward calculations show
that this is τ2(w) in all cases. �

We have now proven our main theorem.

Proof of Theorem 1.1. Lemmas 5.3 and 5.4 together prove the desired result. �
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